SOME GEOMETRIC PROPERTIES OF
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ABSTRACT. The aim of this paper is the study of some geometric properties of
a class of nonlinear differential-algebraic equations (DAEs). A canonical state
representation of this class of DAEs is introduced. When the input of the
system is a canonical input, it is shown that the DAE does not have impulsive
behavior. The solvability of this class of DAEs is studied. A definition of
differential index is introduced. This new definition is compatible with under-
determined DAEs, i. e., DAEs that represent control systems. The standard
definition of differential index is then compared with the proposed definition,
showing the equivalence of this notions when the system is completely de-
termined. A class of index-zero implicit systems, called pseudo-explicit, is
introduced. The solutions of a pseudo-explicit system are the solutions of an
explicit system with initial conditions that lies on a invariant manifold T". Tt
is shown that I' can be stabilized by a convenient modification of the explicit
system without modifying the dynamics over I'. The relationship between the
dynamic extension algorithm and the transformation of an implicit system into
a pseudo-explicit form is discussed. This would led to a symbolic method of
index reduction, and of stabilization of the corresponding invariant manifold,
but this method seems to have some practical disadvantages and numerical
difficulties. The main result of the paper shows that one can construct an
explicit system whose solutions converge to the ones of a given implicit sys-
tem. This would led to a second method that can be useful for the numerical
integration of a class of higher-index DAEs.

1. INTRODUCTION

Implicit systems, Singular Systems, Descriptor Systems, or Differential-Alge-
braic Equations (DAES’s) are deeply studied in the literature. Linear descriptor
systems are an important class of control systems and many papers and books on
this subject are found in the literature [8, 30, 9]. Solvability of DAEs is considered
in [41]. The numerical integration of DAEs is the subject of two excellent books
[6, 4], but this matter is still an active area of research, specially for higher-index
DAEs.

Our paper is an attempt to study DAEs throw a geometric approach, as done
earlier for instance by [40, 23, 39, 18]. In previous works, the connections between
DAEs and the relative degree and zero dynamics was already pointed out [42, 26]
(see also [27, 7]). In the literature it is shown that, when the index is reduced by
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symbolic operations, one may transform the system into an explicit system with
an invariant manifold. In this case it may be important to stabilize this invariant
manifold, otherwise the numerical integration methods may introduce a drift in the
constraints [40, 3, 1, 2].

Our work studies these aspects further and is mainly based on the infinite di-
mensional geometric approach of [20] and on some results of [35] that will be briefly
recalled in sections 2 ans 3.

In this paper we introduce the notion of canonical state representation of a
DAE, which has a geometric meaning and assures that the system does not possess
impulsive behavior of its response. We improve some solvability results obtained in
[35] showing that, under some regularity assumptions, a DAE is a control system
that admits local state representations around any point. Hence, if one fixes the
input and choose a compatible initial condition, then the solvability of this class of
DAEs is assured in the same way as the solvability of a standard control system.

Assume that one regards the constraints y = 0 of a DAE as outputs y of an
explicit system S and this explicit system can be decoupled by static-state feedback.
Then the index is directly related to the relative degree. In this first situation the
system may be reduced to an index-zero system by the application of the decoupling
feedback law [42, 25, 26]. The more general situation, considered in this paper,
arises when system S is not decoupable by static-state feedback. In this second
situation, the standard way of reducing the index simply by adding the derivatives
of constraints' becomes more complicated because the derivatives of the constraints
will depend on the algebraic variables (it is the case of the example of section 7).

When the explicit system S is not decoupable by static-state feedback, we show
that the general method of index-reduction is directly related to the dynamical
extension algorithm and we also prove that the differential index can be deduced
from the algebraic structure at infinity defined in [15]. A notion of differential index
that consider also underdetermined DAEs (i. e., control systems defined by DAEs)
is then introduced and compared with the standard notion of differential index. It
is important to stress that the standard definition of differential index is suitable
for completely determined DAE’s. In order to consider this definition for implicit
control systems one must choose a particular input. However, our definition of
differential index makes sense even if the system is underdetermined, without the
need of choosing an input function.

We give a new insight to the problem of index reduction showing that the DAEs
of this class can be (locally) transformed, by computable symbolic operations, into
a a class of index-zero DAEs called here pseudo-explicit systems. A system E
of such class is equivalent to an explicit system S with an invariant manifold T’
in a way that the solutions of the implicit system E are the solutions of S with
initial conditions in I'. We also show that pseudo-explicit systems can be modified,
without changing the dynamics over T, in a way that T' becomes (locally) stable,
combining previous ideas of [5, 18]. Based on these ideas one could establish a
numerical integration method that combines simultaneous symbolic and numerical
manipulations. Although such method may work well in some particular cases, we
believe that it is not reliable in general and may have many practical problems for
its implementation. This belief is justified bellow and motivates the need of an
alternative method. This second method is based in the main result of the paper,

ISee chapter 2 and the example of equations equations (6.2.9)-(6.2.10) of [6].
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namely, theorem 2, which states that given an implicit system I' one can construct
an explicit system S (using some symbolic differentiations of the constraints y that
are executed for once and for all), in a way that the solutions of S converge in to
the solutions of I'. In fact, under some regularity assumptions we will show that
there exists a explicit control system? with input @ given by

m (§)=rta0.v0.50.200)
where @ is a subvector of v, u = (u, ) and system (1) has the property that x(t) of
the solutions of (1) converge (globally) to the solutions of the implicit system. Note
that the parameterized field 7 may be constructed using the symbolic derivatives
y™*) and their differentials for k = 0,...k*, where k* is the differential index. Note
that this second method is very different from the reduction of index using symbol-
ical operations described in the first method, as it will be clear from section 6. In
both methods one has to compute symbolic derivatives of the constraints. For the
second method, all the other computations may be performed numerically, but for
the first method however, the implementation of the dynamic extension algorithm
needs also symbolic matrix inversions and the rank computation of symbolical ma-
trices, which is a hard task. Note that, if the equations of the system are sparse,
the matrix inversions may destroy this property, whereas the symbolic derivations
of restrictions will preserve sparsity.

If the implicit system is completely determined (7 = @), then 4 and @(®) are not
present in equation 1 (see the example of section 7). When the implicit system is
a control system, then the presence of the derivative of the input may be regarded
as a disadvantage of the method. This difficulty may avoided if the input of the
implicit control system is driven by a control system of the form

t) = (), 2(t),v(t))
ut) = afz(t),2(t),v(t))
where z(¢) is the state of the controller and v(t) is the new external input. Then

80 = 0110 + gt )] + S (a0), 20, 0(0) + GV

If a does not depend on v(t), i. e., there is no direct feedthrough, then @(") does
not depend on v(!). Otherwise, if the new external input v(t) is known a priori,
then one may assume that v*)(¢) is also known.

In the present paper we do not perform any numerical analysis. Our main
result is a strong indication that our geometric results may be a starting point for
establishing numerical methods for the integration of higher-index DAEs. However,
in order to develop a reliable numerical integration method based on the ideas of
our main result, it is necessary to look these issues in a deeper way yet, adapting
our algorithms to the needs of stable numerical calculus (for instance, working with
orthonormal basis and orthogonal matrices, QR factorizations etc.).

The paper is organized as follows. In section 2 the preliminary remarks and
notations are introduced. A brief overview of the infinite dimensional differential
geometric approach of [20] is also presented. Some geometric results about the

2Note that this system is nonclassical in the sense that it is affected by the derivatives a(1(t)
of the inputs.
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solvability and state space representations of implicit systems are presented in sec-
tion 3. A new definition of differential the index (k*) is presented and is compared
with the standard one (v4) in section 4. In section 5, the dynamic extension al-
gorithm is shown to be a technique of index-reduction by symbolic manipulations.
The stabilizability of the invariant manifolds associated to the index-zero system
obtained by this method is also studied in this section. The main result is obtained
in section 6 and a example of its application is presented in section 7 along with
numerical experiments. Finally, some conclusion remarks are stated in section 8.
Some complementary material and some proofs are presented in the appendices.

2. PRELIMINARIES AND NOTATION

The field of real numbers will be denoted by IR. The set of real matrices of n
rows and m columns is denoted by IR"*™. The matrix M7 stands for the transpose
of M. The set of natural numbers {1,...,k} will be denoted by |k]. Our approach
will follows the infinite dimensional geometric setting introduced in control theory
by [17, 38, 20] in combination with the ideas presented in [35]. We will use the
standard notations of differential geometry in the finite and infinite dimensional
case. A brief overview of the infinite dimensional approach of [20] is presented in
section 2.1. Some notations and definitions of section 2.1 are used along the paper
(e. g. the definition of system as a diffiety, and the definition of state representation
as a local coordinate system).

For simplicity, we abuse notation, letting (z1,22) stand for the column vector
(25, 2I)T, where z; and zy are also column vectors. Let 2 = (21,...,7,) be a
vector of functions (or a collection of functions). Then {dz} stands for the set
{dzy,...,dx,}. If Lis a set in a metric space M, with metric dist(-, ), and p € M,
then dist(u, L) = inf ¢y, dist(u,a). Given a control system evolving on a manifold
S, we say that a submanifold T is invariant if, given initial conditions over I', then
all the corresponding solutions are always contained in I'.

2.1. Diffieties and Systems. The aim of this section is to introduce a brief
overview of the approach of [20]. The presentation will follow the lines of [35].
IR4-Manifolds. Let A be a countable set. Denote by R4 the set of functions
from A to IR. One may define the coordinate function z; : R4 — IR by z;(§) =
&(i),i € A. This set can be endowed with the Fréchet topology (see [20]). A
function ¢ : R* — IR is smooth if ¢ = ¢(z;,,...,2;,), where ¢ : R® — IR is a
smooth function. Only the dependence on a finite number of coordinates is allowed.
From this notion of smoothness, one can easily state the notions of vector fields
and differential forms on JR* and smooth mappings from R4 to IR®. The notion
of IR*-manifold can be also established easily as in the finitely dimensional case.
Given an IR“4-manifold P, C*(P) denotes the set of smooth maps from P to
IR. Let Q be an IRP-manifold and let ¢ : P — Q be a smooth mapping. The
corresponding tangent and cotangent mapping will be denoted respectively by ¢, :
T,P —+ T¢(p)Q and ¢* : T;(p)Q — Tg’P. The map ¢ : P — Q is called an immersion
if, around every £ € P and ¢(§) € Q, there exist local charts of P and Q such that,
in these coordinates ¢(z) = (x,0). The map ¢ is called a submersion if, around
every £ € P and ¢(§) € Q, there exist local charts of P and Q such that, in these
coordinates, ¢(x,y) = x. Contrarily to the finite dimensional case, immersions and
submersions cannot be characterized by the injectivity or the surjectivity of the
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corresponding tangent mappings. In fact, the inverse function, implicit function
and rank theorems do not hold in this context [45].

Diffieties. A diffiety M is a IR* manifold equipped with a distribution A of
finite dimension r, called Cartan distribution. A section of the Cartan distribution
is called a Cartan field. An ordinary diffiety is a diffiety for which dim A =1 and a
Cartan field 9y is distinguished and called the Cartan field. In this paper we will
only consider ordinary Diffieties that will be called simply by Diffieties.

A Lie-Bicklund mapping ¢ : M — N between Diffieties is a smooth mapping
that is compatible with the Cartan fields, i. e., .0y = On © ¢. A Lie-Bdécklund
immersion (respectively, submersion) is a Lie-Backlund mapping that is an im-
mersion (resp., submersion). A Lie-Bécklund isomorphism between two diffieties
is a diffeomorphism that is a Lie-Backlund mapping. Context permitting, we will
denote the Cartan field of an ordinary diffiety M simply by %. Given a smooth
object ¢ defined on M (a smooth function, field or form), then ¢ stands for Lad
and L' ¢ = (™, n € IN.

Sysdttems. The set of real numbers IR have a trivial structure of diffiety with
the Cartan field % given by the operation of derivation of smooth functions. A
system is a triple (S, IR, 7) where S is a diffiety equipped with Cartan field ds and
7 : S — IR is a Lie-Béacklund submersion. The global coordinate function t of
IR represents time, that is chosen for once and for all. A Lie-Béicklund mapping
between two systems (S,R,7) and (S',IR,7') is a time-respecting Lie-Backlund
mapping ¢ : S — S’ i. e., 7 = 70 ¢. Context permitting, the system (S, R, ) is
denoted simply by S.

State Representation and Outputs. A local state representation of a system
(S,R,7) is a local coordinate system, ¢ = {t,z,U} where x = {z;,i € |n]},
U= {u;k) |j € Im],k € IN} where 7 0 ¢p='(t,2,U) = t. The set of functions z =

(z1,...,2n) is called state and u = (uy,...,un) is called input. As a consequence
of the last definition, in these coordinates the Cartan field is locally written by
d 0 " 0 (k+1) O
(2) oot PO)
i=1 k-ethzl J
JEIM

A state representation of a system S is completely determined by the choice of the
state z and the input u and will be denoted by (x,u). An output y of a system S is
a set of functions defined on S. The state representation (z,u) is said to be classic
if the functions f; depend only on (¢,z,u) for i = 1,...,n. The output y is said to
be classic if y depends only on (¢, z,u).

System associated to differential equations. Now assume that a control
system is given by a set of equations

t = 1
(3) T; = fi(t,a:,u,...,u(ai)), i € |n]
Yj = nj(waua"'au(ﬁj))ﬂ .] € |_p-|

One can always associate to these equations a diffiety S of global coordinates ¢ =
{t,z,U} and Cartan field given by (2).

Endogenous feedback. In this section we state a simplified notion of endoge-
nous feedback based on coordinate changes. This definition is convenient for our
purposes, but it is not suitable for studying feedback equivalence (see [20] for a
notion of endogenous feedback that is an equivalence relation between systems).
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Two local state representations (z,u) and (z,v) of S induces a local coordinate
change map called endogenous feedback. If we have span {dt,dz} = span {dt,dz}
and span {dt, dz, du} = span {dt, dz, dv}, then we locally have diffeomorphisms
(t,z) = (t,2) and (t,z,u) — (t,z,v) called static-state feedback. The extension
of state by integrators is another particular example of endogenous feedback. For
instance, putting integrators in series with the first £ inputs of the state represen-
tation (z,u) gives z = (z,u1,...,ug) and v = (U1, .- ., Uk, Ug+1,- - -, Um ). Note that
the local coordinate functions of S in this case are the same, but they are joined
together in a different way, giving rise to (z,u) and (z,v), which are related by an
endogenous feedback.

2.2. Regular implicit systems. Let I" be an smooth implicit system of the form

(4a) a(t) = ft,x(t) + gt z(t))u(t)
(4b) y(t) = a(t,z(t)) + b(t,2(t))u(t) =0
where z(t) € IR™ is the pseudo-state of the system, u(t) € IR™ is the pseudo-input?,
and y; =0,i=1,...,r are the constraints.

One may associate to the implicit system ', the explicit system S given by
(5a) £(t) = f(t,x(t) + g(t, z(t))u(t)
(5b) y(t) = alt,z(t)) + b(t, z(t))u(t)

Now consider the system S with Cartan field % given by (2) and output y, in the
framework of [20] (see section 2.1). Then y(*) stands for the function %y defined
on S, which may depend z,u(®,u(), .. .

Definition 1. In the sequel we shall consider the following codistributions defined

on S

(6a)Y_1 = span {dt, dz}, Vi = span {dt,da:, dy,..., dy(k)} for allk € IN
(6b)  Y_; = span {dt}, Y, = span {dt,dy, ey dy(k)} for allk € IN
(6c) Y_, = {0}, Y = span {dy, ey dy(k)} for allk € IN

o

In [35] it is shown that we may identify (canonically) the implicit system T’
defined by (4) with the subset of S defined by

(7) r={ces|y® =0,ke N}

Definition 2. Let U C S be the open and dense set of reqular points of all the
codistributions Vi, Yy and Yi, k = 0,...n. The implicit system T given by (4)
is said to be regular if T C U, T # 0 and there exists a set of (fized) integers
{00,-..,0n}, such that o, = dim Yy, (&) — dim Vi1 (§) for every & € T'. In this case,
the sequence {0y, ...,0,} is called the structure at infinity of the implicit system®.

o

3Note that u is not a differentially independent input for I', since the constraints y = 0 induce
differential relations linking the components of u. By the same reasons, z is not a state of T".

4The Prop. 1 will show that I" is a immersed submanifold of S.

5This sequence is in fact the algebraic structure at infinity of the explicit system S defined by
(5) [15, 12] (see also [34]).
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The class of nonlinear implicit systems (4) is not particular as it appears at a first
glance. In fact, the next remark shows that general nonlinear differential-algebraic
equations (DAEs) can be always converted into an equivalent system of the form
(4). For this, consider the following differential equations:

(8) oi(t,wy, ... ,wﬁa“), e Ws,y .,wga”)) =0,i € [r]

Let 3; be the greater order of derivative of w; that may appearin (8) fori =1,...,r.
Then f; = max{aj;,i € {1,...,7}},j € {1,...,s}. Consider the system S with
state z = (wy,..., wgﬁl_l), ey Wy ,wgﬁs_l)), input v = (uy,..., us), where

uj = w§-6 i ), and output y defined by equations®:

u.}j(p) _ wg;)

©) - (8;—1) _ Jelsl

yi = di(t,wy, ..., w™ L we, . wl™Y i €[]

It is clear that the system (8) is represented by the system (9) with the constraints
y; = 0, which is in the form (4a)-(4b). So, all the results developed here may be
applied to a set of DAEs of arbitrary order. From the results of this paper it will
be clear that a (local) state  of the implicit system can be always chosen as a
subset ofm:(wl,...,wgﬁl_l), . .,wgﬁs_l))
a subset of w.

For instance, consider a DAE in descriptor form:

E(z)z = A(z) + B(z)v

Cy Wy and an input u can be always

and note that it can be transformed into the implicit system

n+0v
= E()u—A(z) —B(zv=0

z

Y
which is in the form (4a)—(4b) where x = z and u = (v, ). Note that y is affine in
u.

2.3. Affine systems and unbounded coordinates. We now define a notion of
unbounded coordinates on IR“*-manifolds (see section 2.1) and some related results.
Roughly speaking, a set, of coordinates is unbounded if one may choose the value of
these set of coordinates arbitrarily. In other words, given coordinates (z,w) with
w unbounded, if (zg,wy) is admissible, then (xo,w) is also admissible for any w.

Definition 3. Let ¢ : U — IR* x IRP, where ¢ = (X,Y) is a local chart of a
manifold S defined on the open set U C S where X : U — RA and , Y : U — R®
are smooth maps. Then, the coordinates Y are said to be unbounded if V := ¢(U) =
W x IRB, where W is an open subset of R*. Let ¥ : H — H; be a diffeomorphism
between open subsets H and H, of R* x IRB, such that (X,Y) ~ (X1,Y1). Then
U is said to be unbounded in Y if the image of U is of the form V x IRP with V
an open subset of IRA [ )

6Note that y; (i € [r]) may depend on some uj (7 € s]).
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Remember that a state representation (z,u) is a special coordinate chart for
a system S (see section 2.1). Given an explicit system (5) one may construct a
system S with global coordinates {t,z,U}, where U = (u'®) : k € IN) and Cartan
field (2). It is a simple exercise to show that an affine locally regular static-state
feedback, i. e., u = a(x) + B(x)v, for 8 that is locally nonsingular, defines a new
state representation (z,v) and the chart {t,z,V}, where V = (v® : k € IN) is
unbounded in V' (see the proof of lemma 2).

We may state the following auxiliary results.

Lemma 1. If (Z,,W) is a local chart with unbounded W, card Z; = card Zs is
finite and span {dZ,} = span {dZ>}, then (Z2, W) is also a local coordinate system
with unbounded W .

Proof. By the (finite dimensional) inverse function theorem it follows that Z; +—
Z5(Zy) is a local diffeomorphism defined in some open subset V C IR4 with image
U C RA. Hence (Z,,W) = (Z5(Z1),W) is also a local diffeomorphism defined in
some open subset V' x IRP ¢ IR* x IRP with image U x IRP. Tt follows easily that
(Z3,W) is a local chart with unbounded W. O

The next lemma is directly related to the steps of the dynamical extension algo-
rithm (see section 2.4). Part (i) refers to a regular static-state feedback and part
(ii) to a dynamic extension.

Lemma 2. Let S be a system, and let (x,u) be a state representation of S. Assume
that {t,z,u® ... u® W} is a local chart with unbounded {u'®), ... u* W}, and
let (x,v) be defined by an affine locally regular static-state feedback u = a(x)+ 8 (x)v.
(i) Then {t,z,v®, ... v W} is alocal chart with unbounded {v(®,... v*),

W} and span {dt, de, dv®, . .. ,dv(k)} = span {dt, dz, du® . .. ,du(k)}.
(ii) If v is partitioned as v = (7,0), £ = (z,8) and p = (31, 0), then {t,
Eu® o pk =D 58 W is a local chart with unbounded {u®), . .. pk=1)
and such that span {dt,d¢,dp(?, ..., dp* =Y d6™} = span {dt, dz,du®, .

Proof. Note that the equations

v o= —f7 N (@)a(z) + A7 (@)u
vo= (bl(l‘,u)-l-ﬂ*ld

U(k) = (bk(xaua'-'au(k_l)) +ﬂ_1u(k)

for k € IN define a local diffeomorphism ¥ 4 such that (¢,z,U) + (¢,2,V), where
U={u® :kecA},V={®. ke Al with A =IN or with A = {0,...,k}.
This diffeomorphism is easily seen to be unbounded in V' (with inverse unbounded
in U). Taking A = {0,...,k} note that the map (¢t,z,U, W) — (t,z,V,W), where
(t,z,V,W) = (U 4(t,z,U), W) is a local morphism which is unbounded in (V, W).
This shows (i). To show (ii) it suffices to see that {t,&, @, ..., u*=1 5®) W} =
{t, (z,5@), (M, 5, ... ("), 5*k-1D) 55 W}, i e., these sets of coordinates
coincide up to a renaming of the variables. d

2.4. Dynamic extension algorithm (DEA). The DEA is a well known algo-
rithm in nonlinear control theory and it is essentially a tool for computing system
right-inverses and the output rank [16]. It is strongly related to the problem of

,ﬁ(k)’W}
..,du(k)}.
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input-output decoupling [14, 32], disturbance decoupling [33, 13] and input-output
linearization [13, 36]. The dynamic extension algorithm for a system (5) has an in-
trinsic interpretation [15]. This interpretation was considered further for the study
of quasi-static feedback in nonlinear control theory [12].

We will see that the dynamic extension algorithm is a sequence of applications of
regular static-state feedbacks and extensions of the state by integrators. According
the the ideas of the end of section 2.1, one sees that this algorithm can be regarded
as the choice of a new local state representation of system S. Now we state a slightly
different version of DEA that is useful for our purposes. Let S be the system (5)
with Cartan field 4 defined by (2), classical state representation (z,u) and classical
output y. Assume that y(©) =y = ag(t, z) +bo(t,z)u and denote z_; =z, u_; = u,
fo1(t,z) = f(t,z), g-1(t,x) = g(t,z). The step k of this algorithm (kK =0,1,...)
is described below:

Step k. In the step k£ — 1 we have constructed state equations

(10) 1 = fratre1) Fgr1(t e 1)up1
(11) y M = ap(t,wr_1) + bi(t, T )up—1
where z_1 = (x,00,..., Ug_1). Assume that ({,Zrp_1) is a regular point for the

matrix by (t,z;_1) and let oy be the rank of by, around (f,Zy_1). There exist a

partition” y*) = (g,gk),ﬂlgk)) of y®) such that dim gj,(fk) = oy and we may define a

(locally) regular static-state feedback (see appendix B):
(12) up—1 = ag(t,rp—1) + Bi(t, Tp—1)v
where vy = (U, x) is such that
y =
(13) °f - _
?Jl(gk) = ]gk) (t, xp—1,Tp)

Add the dynamic extension:

k
k

(14)

<) S

k
k

) 2

and define uy = (4, uy). This defines a new set of state equations:

(15) Tr = fe(t,ox) + gr(t, Tr)ug

where z;, = (mk,l,gj,(ck)) and up = (g,(ckﬂ),ﬂk). By construction we have y*) =

y®) (t, 21). Hence we may compute

oy *) oy *)
(16) y(k+1) = %t + gxk (fr + grur)
= apt1(t k) + bt (£, Tr)us

¢

The following lemma summarizes the main geometric properties of the DEA for
time-invariant nonlinear systems. This lemma is a geometric version of previous
results stated in [15, 31, 12, 35] and it improves some results obtained in [34]. We
stress that the list of integers {oo,...,0n}, where n = dimz, is the geometric
counterpart of the algebraic structure at infinity (see [15]) and the integer p = oy,

7Including; possibly a reordering of its elements.
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is called output rank at £. We stress that, with the exception of part 9, this result
is valid for nonaffine systems®.

Lemma 3. Let S be the system (5) with Cartan field & defined by (2), classical
state representation (x,u) and classical output y. Let Vi be the open and dense set
of regular points of the codistributions Y; and Y; for i = 0,...,k defined in (6a)
and (6b). Let & € Vi.. In the kth step of the dynamic extension algorithm, one may
construct a new local classical state representation (xy,ur) of the system S with
state xp = (m,gj(()o), . ,g,(f)), input uy = (ﬂ,gk),ﬂk) and output y*+Y) = hy (¢, 21, up,)
defined in an open neighborhood Uy, of €, such that
(i) span {dt,dz),} = span {dt,dz,dy, ...,dy" } = Y.
(ii) span {dt,dzy,dur} = span {dt, dr,dy,... ,dy(k“),du} = Vi + span {du}.
(i) It is always possible to choose g,(éﬁ_tl) in a way that ]j,(ckﬂ) C g,i’“j{l).
(iv) It is always possible to choose U1 C Uy.
A4 et € Vi et Sy be the greater open mneighborhood o such that
(v) Let £ € V,,. Let Sy be the g D ighborhood of & h th
the dimensions of Y;,Y; j € {0,...,k} are constant inside S. The se-
quence o, = dim(Vg|¢) —dim(Vy_1]¢) is nondecreasing, the sequence py, =
dim(Yy|¢) — dim(Yy—1]¢) is nonincreasing, and both sequences converge to
the same integer p, called the output rank at &, for some k* <n = dimz.
(Vi) Sk = Sk* fOT k Z k*.
(vil) Yy Nspan{dz}|, = Yi-_1 Nspan {dz}|, for every v € Sp- and k > k*.
(viii) For k > k*, one may choose §, = yp~ in Ug<. Furthermore, Yipi1 =
Yi + span {g,(fkﬂ)} for k> k*.
(ix) If the system is affine, i. e., it is of the form (5), then the state representa-
tion (xy,ur) obtained in step k induces a local chart {t, zy, (ugj) :jeN)}
of S that is unbounded in W = {u,(j) :je N}
Proof. See appendix A. O

Remark 1. Note that dim)Y, = 1+ dimz, = 1 +n + Ef:o oi, dimygg = oy,
dimug = m and dimu, = m — oy, where n = dimz, and m = dim u.

3. SOLVABILITY

In this section we study the solvability and state space representations of reg-
ular DAEs. We improve some previous results of [35] and introduce the notion
of canonical state representation. The results of this section are closely related to
some ideas of [19].

3.1. Regular implicit systems are immersed submanifolds. It is shown in
[35] a regular DAE defined by (4a)—(4b) can be regarded as an immersed system in
the explicit system S defined by (5).

Proposition 1. [35] Let S be the system associated to (5) in the sense of [20] (i.
e., a diffiety with Cartan field (2) and a time notion 7 : S — IR). Let T be the
subset of S defined by T = {¢€ € S| y™ (&) =0,k € IN}. Suppose that:

(A1) T is nonempty and every & € T is a regular point of the codistributions
Yi,Vi,k=0,...,n (see (6a)-(6b)).

8In this case the steps (S1) and (S2) of appendix A may be regarded as the description of the
DEA and the calculations may depend on the implicit function theorem [29].
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(A2) For every & € T and every open neighbourhood U C S of £, there exists some
€ > 0 such that 7(T N U) contains an open interval (1(£) — €, 7(€) + ¢€).

Then the subset T' C S has a canonical structure of immersed (embedded) subman-
ifold of S such that the canonical insertion is a Lie-Bdicklund immersion. Further-
more I' admits a local state representation around every point & € T'.

The proof of proposition 1 is based on the following result (compare with [35,
Thm. 4.3]):

Lemma 4. Let S be the system (5). Let n = cardxz. Let U C W be the set of
reqular points of the codistributions Yy, Vi, k € |n], defined on S and let £ € U.
Set k* as in lemma 3. Let z,,vq, 2,0 be sets of functions such that {dt,dz,},
{dt,dz,,dv,}, {dt,dz,,dzp} and {dt,dz,,dzp,dv,,dvy} are respectively local basis
of Yie—1, Yi=, Yi=—1 and Vi + span {du} around &.

Then, there exists an open neighbourhood Ve of & such that (z,v) = ((2a, 2p), (Va,
vp)) s a local classical state representation of the system S that is defined on Vg
and is such that the (local) state equations are of the form:

(17&) Za = fa(tazaava)
(17b) 2.:b - fb(t,za,Zb,Ua,'Ub)-

and span {dt, dz,, (dvgk) : k€ IN)} =span {dt, dy® - ke EV} Let Z = {z,, (vgk) :
ke IN)} and Y = {y](k) :j € |pl,k € IN}. Then we may choose Z C Y. Further-

more, the state representation (z,v) induces a local chart {t,z, (v®) : k € IN)} that
is unbounded in {v®) : k € IN}.

Proof. The idea of the proof of this lemma is to execute the dynamic extension
algorithm considering the explicit system S given by equation (5) with output y.
The conditions of Def. 2 assures (according lemma 3) that the dynamic extension
algorithm may be executed without any local singularities. In the step £* — 1
of this algorithm we have computed a new state representation (%, ) where & =

(a:,gj%l), . ,]j,(ﬁ*_l)) and @ = (w, u), where w = g,(g’i*_)l and pu = Ug+_1. Note that
the new state equations are affine, i. e., they are of the form
(18) i o= .f(tai') +g(t7j)w+§(taj)/~j/

By parts 1 and 2 of lemma 3 we have span {dt,dz} = span {dt, dz,dy, . ..,dy* ~1}
and span {dt,d%,di} = YVy+. Note that, by construction we have span {dt,di} =
span {dt,dz} and span {dt,dZ,di} = span {dt,dz,dv}, which defines a relation of
local static-state feedback between the state representations (Z,d) and (z,v) (see
the end of section 2.1). The other properties are easy consequences of parts 5, 8
and 9 of lemma 3 and of lemma 1. O

The idea® of the proof of Prop. 1 is to apply Lemma 4 and to show that (zp,vp)
is a local state representation of I' and in the coordinates {¢,z,,V,} for T and
{t, 24, 26, Vo,V } for S, the immersion ¢ is given by u(t,25, Vi) = (¢,0, 25,0, V}).
Furthermore, the state representation (zp, vs) induces state equations of T' given by

(19) 2 = fo(t,0,2,0,uvp)

9An important detail that is overlooked in the present sketch of the proof of Prop. 1 is the
construction of the smooth atlas of T'.
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where f3 is given by (17b). Note that, in Lemma 4, the state z; of I' may be chosen
as a convenient subset of  and the input v, may be chosen as a convenient subset of
u. In other words, vy is the differentially independent part of v and the constraints
y = 0 induce differential relations linking the other components of u. This explains
why we call z by “pseudo-state” and u by “pseudo-input” of I'.

Now we will show that assumptions (A1)-(A2) of proposition 1 are implied by
the assumptions of definition 2:

Lemma 5. Let S be an explicit system (5) such that the corresponding implicit
system (4) is reqular. Let n = cardz. Then the following affirmations holds:
(i) Let Yj, = span {dy,...,dy"®}. Then span {dt} N Yi|¢ = {0} in an open
neighborhood of every point € € T', for k € IN.
(ii) Consider the state representation (17) of lemma 4. Then span {dz,,
(dvgk) 1k € IN)} = span {dy™™ : k € IN} around every ¢ € T.
(iii) The assumptions of definition 2 implies (A1) and (A2) of proposition 1.

Proof. We show first that span {dt}ﬁYk = {0} for every point of I'. In fact,let { € T’

and let n = El 02] 1al]dy] l¢ = Bdt|e. Then (n; dt) =, ,J(a”dyjl)k, dt) =
> Qi (dy/)|§, 4y = D ,Jy]z+1)|§ = 0 = f|¢. Note that, for all v € S we have

dim Y|, = dim (span {dt}|,) + dim Yy, |, — dim(span {dt}|, N Y|»)

then the nonsingularity of span {dt}, of Y} and of Y, implies that span {dt} N Yy,
is nonsingular around £ € I" and hence (i) holds. To show (ii), let n € Y. Since

span {dt, dz,, (dvgk) ik € IN)} = span {dt,dy(k) ke N}, it follows that n =
Bdt+3 7, vidza; +) 2, ; 5ijdvt(1? By lemma 4 we have Z = {z,, (vgk) tkeN)}CY=
{y™ : k € IN}. From (i), it follows that 3 must be zero and (ii) holds. Now, since

{t, za, 2p, (ng),vgk) k € IN)} is a local coordinate system, by (ii) it follows that in

these coordinates, y*) do not depend on ¢, but only on {zq, 2, (Ut(lk),v,gk) ke IN)}.
In particular, if (t Za, 2, Va, V) € T then (t+e Za» 2y, Va, V) € T for every |e| small
enough, showing that (A1) and (A2) are implied by the assumptions of definition
2. O

3.2. Canonical state representation of implicit systems. The following propo-
sition characterizes special state representations of implicit systems which have a
canonical meaning.

Proposition 2. Let k* be the integer defined in Lemma 3. Consider now the ex-
plicit system S defined by (5) and let Z,u be sets of functions defined on S such
that (locally) the canonical projections of {dz} on Vi« /Yi+ and the canonical pro-
jections of {du} on (Y~ + span {du})/Vi~ are both basis. Then (Z,u) is a local
state representation of the implicit system (4) called canonical state representation.

Proof. From lemma 3 part 7 it is easy to show that dim Yy /Yi« = dim Vgs«—y/
Yi« 1. From this, it follows easily that the construction of the state representation
(2p,vp) of " given by the equation (19) (see lemma 4) is equivalent to the statement
of the present proposition with z, = Z and v, = . O

Remark 2. Note that the state representation (19), obtained by the choice of a
canonical state representation, is classical, i. e., the derivative of the state is a
function of the state and the input. In particular such a state representation does not
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have impulsive response, which may arise with other choices of state representation.
For instance consider the DAE &1 = xs + w1, & = 3, 3 = uz, y = x1 = 0. It
is easy to verify that (T,u), where T = (z2,z3) and U = us is a canonical state
representation with state equations s = x3 and &3 = us. If the input of the
implicit system is uy then one may choose a non-canonical state representation
(z,u), where T = x> and U = u1, corresponding to the state equations Ta = ;.
Note that the state representation (Z,u) is not classic.

4. DIFFERENTIAL INDEX

The index of general DAEs was studied for instance in [10, 28]. In this work we
deal with the differential index'®. In [18] a geometrical definition of the index of
DAEs was given. It was shown that this definition was compatible with another
definition given earlier in [22] for linear systems, since the linear definition of index
applied to the linearized system coincides with the nonlinear definition.

In this section we will give a new geometrical definition of the differentiation
index of DAEs of the form (4). This geometric definition will be compared with
the classical notion of index and will be shown to be independent of the canonical
state representation chosen. In particular, the index of a system does not depend
on the canonical input chosen among the components of the pseudo-input u. We
stress again that our definition is compatible with underdetermined DAFEs, whereas
the standard definition of index is not. Our regularity conditions of definition 2
assure that the index is an invariant of the system.

4.1. A new definition of differential index.

Definition 4. Let (4) be a regular implicit system and let {oo,...,0,} be the
algebraic structure at infinity of this system (see Def. 2). Let k* be the least integer
such that o = max{og,...,on}. The integer k* is called the differentiation index
of the regular implicit system (4). A

The following proposition links our last definition with the “classical” notion of
index, that states that this integer is the least order of derivation of constraints
that are necessary to compute & [10]. It means that the index is the least order of
derivation of the constraints y in a way that & may be computed as a function of a
canonical state and of a canonical input.

Proposition 3. Assume that (Z,u) is a canonical state representation of the reqular
implicit system (4). Assume that the explicit system S defined by (5a) is well-
formed'!, i. e., span {dt, dr,di} = span {dt,dz,du}. Then the index k* is the least
integer k* such that & may be computed as a function of {t,Z, U, y, ..., y*)}. In
other words, the following condition holds for the explicit system S defined by (5)
for k = k*:

(20) span {dz} C span {dt,dﬁ, du,dy, ..., dy(k)} C Yk + span {du}

but the same condition do not hold for k < k*.

10Which may differ from the perturbation index or other notions of index, as shown in [10].
This is equivalent to say that g(t,z) of (5) has full column rank [43].
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Proof. By construction, we have that
(21) span {dt,dz,du} C span {dt, dz,du,dy, . .. ,dy(k*)}

As S is classic, it follows that (20) is satisfied. Now assume that (20) holds for
some k < k*. By Lemma 3 part 2 it is easy to see that dim @ is given by m — oy«
and that!?

(22) dim (Y, @span{du}) = (1+n+oo+...+0r) + (m — o))

From (20) we see that span {dt,dz,du} = span {dt,di,dz} C Yy @ span {du}. In
particular, it follows that

(23) Vi, ® span {du} = Vi + span {du}

By Lemma 3 parts 1 and 2 it follows that ), + span {du} = span {dzj_1,dur_1}.
Hence,

(24) dim (Vi +span{du}) =14+n+oo+...+0p—1 +m
It follows from (22), (23) and (24) that o = o+ and so k = k*. O

Remark 3. The following points must be stressed out:

(i) One may re-state a new version of proposition 8 by replacing (20) by the
condition:

(25) span {dt} C span {dt, dr,du,dy,..., dy(k)} = Vi, + span {du}

In this version, the index is the least integer k* such that (25) holds for
k=k*.
The proof is similar and is left to the reader.
(ii) When (5a) is not well-formed, one may replace condition (20) by

span {dz,du} C span {dt, dz,du,dy, ... ,dy(k)}

(iii) When o~ = m, then the regular implicit system is completely determined,
i. e., there is no input (@ = 00). In this case, from (25) we see that the index
k* is the least integer k such that span {di} C span {dt, dz,dy, ..., dy* },
which is similar to the usual definition of differential index (see section 4.2
for a complete comparison,).

(iv) It can be shown that Def. 4 is equivalent to the the one of [18]. In particular,
assume that the regular implicit system (4) is influenced by a disturbance
w(t) € R" according the following equations:

(26a) w(t) = f(t2(1) + gt x(t))u(t)
(26b) y(t) = h(t,z(t),u(t)) = w(t)

Then the index k* is the greater order of time-derivative of w(t) that in-
fluences the response of system (26).

12Note that direct sum of equation 22 is a consequence of the fact that the canonical projections
of {du} form a basis of (V= + span {du})/Vg=.
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4.2. Comparison. In this section we will compare our definition of differential
index with the standard one. For this, recall the definition of differential index
given in [10, 6, 4]. Given a (solvable) nonlinear DAE:
F(t, (1), () =0
where ¢ € IR™ and consider the derivative array equations:
F(t, &, 1)
Fy + Fp(t,z,2)% + Fp(t, &, x)&
(27) . = Fp(t,z,z,w) =0
k ) .
awF(t, &)
where w = (z(?,..., z(**1D). Roughly speaking, the differential index vy of the
DAE is the least integer k such that & is uniquely determined by (¢,z) and the
equations (27). It is clear that this definition is not suitable when the DAE repre-
sents a underdetermined system. In this case, one must choose an input function
u(+) in a way that the DAE becomes completely determined. Let us assume that
this is the case. Consider the system:

(28a) T = u

(28b) y = F(t,u,z) =0

which is in the form (4). Assuming that this DAE is regular according definition
(2), and that the DAE is completely determined, i.e., og« = n, then the part (iii)
of remark 3 implies that our definition of index applied to system (28) gives the
standard definition of index. Considered in this way, the relationship between the

indices v4 and k* is vg = k* + 1 (see section 4 of [10]). To see this, take for instance
equation (6.2.9) of [6, p.154]'* which is given by

(29a) T = w3

(29b) iy = x4

(29¢) i3 = —m\

(294d) T4 = —X2A—yg

(29e) y = 2i4+25-L?=0

where L, g are positive real numbers. This system is clearly in the form (4) with u =
A. Computing the standard differential index one obtains vy = 3 when considering
A = z5. However, computing the differential index according our definition one
obtains k* = 2. The explanation of this difference is the following. In order to
integrate this system, it is necessary to determine A and % but it is not necessary
to know . So, in order to recover our definition of index from the standard one,
we may re-estate its definition in the following way. Given a (solvable) nonlinear
completely determined DAE:

F(t,&(t), (t),A) =0

where F' does depend on #; for all i = 1,...,n, then the index is the least integer
k such that one may compute # as a function of (¢,z) and the DAE and their
derivatives up to order k. In other words one may distinguish differential variables
x from the algebraic variables A. Note also that, for system (29), one may compute

13This DAE is a model of a pendulum.
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A as a function of x and §j. Hence the system can be integrated with the knowledge
of the second order derivative of the constraint. Hence, it seems that the index
2 represents the real difficulty of integrating this DAE, rather than the index 3.
Note that, applying the definition of index to an explicit control system (possessing
algebraic variables) in the same way that we have done to recover the standard
definition of index, one obtains v; = 1. However, our definition gives k* = 0.

5. TRANSFORMING DAES INTO AN INDEX-ZERO FORM

We now recall some ideas of [42, 25, 21]. Assume that the DAE of (4) is time-
invariant and that the explicit system (5) with output y(t) € IR" is decoupable
by static state-feedback, i.e., it admits relative degree and the decoupling matrix

A(z) has constant rank r [24]. This means that there exists a regular static-state
feedback:

u=az) + f(z)v
where v = (v, 0) and the first » components of v are of the form v = (ygkl), e ,yfak”))
[24]. In this case, it is not difficult to show that our definition of index gives
k* = max{ky,...,k.} and the input of the DAE is ¥. The explicit system S obtained
by taking u = a+ v with o = 0 has an invariant manifold I" and the solutions with
initial conditions in T" are the solutions of the original DAE. For instance, consider
the system (29), let A = u and note that y® = 2(z3 + 23 — z29) — 2(2% + z2)\.
Hence, if y = 0 then
(30) X = (3 + o] — 229)/ (27 + 23).
The explicit system obtained by substituting (30) back in (29) is such that the
submanifold T of the state space defined by y = y = 0 is an invariant manifold. In
this work we generalize this ideas when the system S with output ¥ is not static-

feedback decoupable. We begin this section with the study of a particular class of
DAEs.

5.1. Pseudo-explicit systems. We now define a class of index-zero implicit con-
trol system, called pseudo-explicit systems, for which the problem of finding its
solutions is equivalent to seeking the solutions of an explicit system, with initial
conditions that lies on an invariant submanifold A of the state space.

Definition 5. A regular implicit system (4) is called pseudo-explicit if, for the
explicit system S defined for (5) (considered in the sense of the section 2.1) we
have:
(i) span {dy(k),k € lN} C span {dt,dz}.
(ii) There exists k* € IN such that'* span {dy(k)} C span {dt,dy, ..., dy*)},
for all k € IN.
[ )

Note that in this case, the infinite dimensional manifold S defined by system (5)
is given by Rx X x U, where X' = IR" and Y = IR™ and the corresponding Cartan
field is given by (2). The following proposition summarizes the main properties of
pseudo-explicit systems:

Proposition 4. Assume that (4) is a pseudo-explicit system. Then:

4\We consider that k* is the least integer with this property.
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(i) Let T = {€ € S|y (&) =0 for allk € IN}. Then T = A x U>® where A
is an immersed (embedded) invariant submanifold of IR x X.

(il) The curve &(t) is a solution of the implicit system (4) if and only if £(t)
is a solution of the explicit system S given by (5) with initial condition
.Z‘(to) = Xo with (t[),l'()) e A.

Proof. See appendix C. O

The pseudo-explicit system is said to be I'-stable if, for every initial condition
(to,xo) close enough to A, the solution of the system tends to I'. This fact may
be important for numerical integration for such a system, since errors, that could
arise in the numerical integration, would be corrected by the attractiveness of T'.

Definition 6. A pseudo-explicit system is said to be T-stable if, for (to,xo) € A
there exists € > 0 such that if the initial condition is T with dist(Z,z¢) < €, then
the solution £(t) of the explicit system S for every'® u(-) converges to T, i. e.,
dist (x(t), A) — 0. [ )

Now we generalize some ideas of [5] about stabilization of invariant manifolds
related to DAEs.

Proposition 5. Assume that S is a pseudo-explicit explicit system with invariant
manifold T'. Then, around every & in I there exists a T'-stable pseudo explicit system
S such that, for every applied input and every initial condition & on T, the solutions
of S and S (locally) coincide.

Proof. Let B = {dy%o), . dygpl), . dy,(,o), e, dy,(,pr)} be the basis of Yy« of the
proof of proposition 4 . Let y(?) = (yY’l), L yehT

Write dy(?) as row vectors in local coordinates, obtaining the r x n matrix M (z).
Let g(t,z) = MT(MMT)~'. By construction, § may be regarded as a set of r
(column) fields such that A(t,z) = (dy‘?;§) = I,., where I, is the r x r identity
matrix. We show now, using the same ideas of decoupling theory [24], that there
exist v = ¢(t, z) such that the system & = f+gu+gv in closed loop with v = ¢(t, x)
(locally) gives the system S with the desired properties. Let a(t, z) = (dy‘?; f+gu).
Take v = (¢1,...,¢,), where ¢; = —a; — > 57, bijy](-i) and the constants b;; € IR

are chosen in a way that the linear differential equations y](-pj ) + Z?io bijy](.l) =0 are
asymptotically stable for j € |r]. Since ¢(t,z) = 0 for all (t,z) € A, the desired
result follows. _

Note that, if B is globally a basis of Yj«, then the construction of S may be also
global (the integers p; may change from point to point and this is the obstruction

to the globalization of the result). O

In [18] it was shown that implicit systems may be locally put in pseudo-explicit
form. The next result shows that this can be done using computable (effective)
algebraic operations and the invariant manifold is always stabilizable.

Theorem 1. A reqular implicit system T defined by (4) can be locally transformed
into a I'-stable pseudo-explicit system around every point of I'. Furthermore, if the
restrictions are affine, i. e., if y = a(z) + b(x)u, then the requires transformation
is a composition of a sequence of (effective) symbolic operations.

I5We assume that u(-) is such that the solution of S exists for ¢ € [to, 00).
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Proof. See appendix D. O

6. MAIN RESULT

In this section we show that, given an implicit system, one may construct a
explicit system such that some components of the solutions of the explicit system
converges to the solutions of the implicit system. For this, one has to compute
symbolically (for once and for all) the derivatives of the constraints up to order k*,
where k* is the differential index. We first study this question only locally. After
that, we discuss how to establish a global version of this result.

6.1. Special coordinates. In this subsection we will establish the existence of
special coordinates of system S that are instrumental for establishing our main
results.

Proposition 6. Let S be a system with global state representation (5). Let £ € S
be a regular point of Yi, Vi, k € {0,...,k*} defined in (6a) and (6b). Consider the
notation of lemma 3 and let {og,...,0,} be the algebraic structure at infinity of
this system, let dxy be a local basis of Vi around & and let k* be the convergence
index of the structure at infinity. Choose a mested family of subsets of the input

u DUy D ... D up- with card (ug) = m — oy, and in a way that (dt,dzy,duy) is a
local basis of Vi, + span {du} around &. Then the functions
(31) {t,ap, a2, a2}

where Z = {u(k*+k+1) ik € IN}, form a local coordinate system around £ which is
unbounded in W = (ﬂ,(:l), e ,ﬂ(()k*) Z) and is such that {dt, da:k*,dﬂgﬁ), ... ,dﬂ(()k*)}
is a basis of span {dt, du,... ,du(k*)}. In particular, if {dy} is a local basis of Y+
and (Z,u) are defined as in proposition 2, then

(32) (t.z,g,5,a) ,....a" 7}

is also a local coordinate system which is unbounded in W = {u, ﬂ,(cl*)fl, ... ,ﬂ(()k*), Z}.

Furthermore {dt,dg, du, dﬂ&ll, ... ,dﬂ(()k*)} is a basis of span {dt,du, ..., du(¥")}.

Proof. First note that, by parts 1 and 2 of lemma 3 (see also (S1) and (S2) in
appendix A) it is easy to see that the choice of uy, described above is a possible
choice of such subsets of the inputs in the dynamic extension algorithm (DEA).
So denote (zj,ur) the state representation obtained in the step k of DEA. The
proof proceeds by induction. In step 0 of the DEA, write the global coordinate
system induced by the state representation (z,u) as {t,z,u,...,u*), Zy}, with
Zy = {u®*" tk+1) . k € IN}. By lemma 2 and the description of the DEA it follows

that {t, zo, uo, .. ., u(()k*_l) , ﬂgk*) , Zo} is a local coordinate system that is unbounded

in 7, = (ﬂgk*),Zo). Continuing in this way, in the step k& of DEA, we shall have
constructed a chart {t, zy, u,. .. ,uik _k_l),ﬂik _k),Zk}, where Z;, = {ﬂ,(fk_l_kﬂ),
. ﬂ(()k*), Zy}, that is unbounded in {ﬂ;ck*fk),Zk}. Note that, in each step, lemma,

1 also ensures that {dt,dzy,duy, ..., duik*_k_l), ﬂ,(gk*_k),ﬂifl_kﬂ), e ﬂ(()k*)} is a

basis of span {dt, dz,du, . ..,du'* ) }. Proceeding in this way, the first part of result
is easily proved by induction. The fact that (32) is a local chart with the claimed
properties is an easy consequence of lemma 1. (]
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6.2. Establishing the main result. For simplicity, in this section we may con-
sider the following assumptions for the explicit system (5):

(33) The set L = {dt,dy®),...,dy*)} is independent for every ¢ € S.
(34) There exists a fixed choice of the functions of (32) in a way that
dt,dz,dy, du, dal.) ., ... day"} is globally a basis of
{ Y kx—1 0 g y
span {dt,dz, du, ..., du*")}.
(35) The input of the implicit system is & = ﬂgﬁ) (which is a subset of u).

We shall see that condition (33) will assure the global convergence of our main
result. If the set L is dependent for some points outside I' then our result will
hold only locally. The condition (34) will guarantee that one does not need to seek
for different choices of the functions (32) during the process of integration'. The
condition (35) implies that the input of the implicit system is a canonical input. In
particular, the behavior of the system is not impulsive.

Now we will construct the system (1). Let M = IR x X x (IR™)* +! with global
coordinates (t,z,u(®,... u*")), where z € IR" and u® € R™ k = 0,..., k"
Consider the partition'” u(®) = (@, %) where dim @ = oy~ and dim @ = m — oy-. Let
N = R x X x R™ 7 x (IR™)*", with global coordinates (t,z,a,u(",...,u*)) =
(t,z,v). Note that, after a reordering, the coordinates of M are (t,z,v,u), with
v=(a,u®,. . . uk)).

Let S be the system (in the sense of [20]), with global coordinates {t,z, (u(*) :
k € IN)} defined by (5). Let 4 be the Cartan field associated to S (given by
(2)). As before, let y = a(t,z) + b(t, z)ul® be the output of S and denote y(©) =y
and y*) = L%y(kfl). Let mpr : S — M be the canonical projection. Abusing
notation, we consider that {y(®,...,y*")} are functions defined on M. Let £ € S,
and ma(€) = p = (t,z,v,u). With the same abuse of notation, we may consider
that B = {dt,dz,dy©,...,dy*") da,dal’) ... dal "} is the local basis of T M
induced by Prop. 6. Define 3 = 47 = f(m)+§(m)u andlet 7 = (y@,...,y*")) and

dt
U= (ﬂ,(:*)_l, .. ,ﬂ(()k )). Note that, up to some reordering of coordinates, we have

M =N x U where U = R™ . Solet 7: M x U — T M, be the parameterized
field defined by:

(363“) dt(T) = 7n=1

(36D) d#(t) = 1 = f(z) +§(z)u
(36c) dy(r) = ;= -y

(36d) do(r) = 15 =-80

(36e) di(r) = 15 =a®

In order to help the reader, we summarize our notations of this section in the
tabular arrangement of figure 1.

161t may be desirable, at least from the numerical point of view, to choose these functions
pointwise in order to improve the conditioning of matrix T" of (37).
TWith a possible reordering of the components of (9,
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Coordinates Notation Comments
u® =y (u,u) @ is the input of the DAE
(@, u™, .. u®)) v Derivatives of u, apart &
(t,z,v) ¢ state of 7 (canonical coordinates of N)
(t,z,v,u) (¢, w) Canonical coordinates of M)
(ﬂg*)_l, e ,ﬂ(()k*)) v Part of the coordinate system of (34)
(y©, ..., y*)) U Output derivatives
(t,Z,7,0,u) New coordinates for M (see (34))

FIGURE 1. Table of notations of this section.

Let T be the matrix formed by the differentials dt, dz, dy, dv, du when written in
the coordinates {t,z,u(®,...,u*)} as row vectors. Let

dt
dz
(37) T=| dy
dv
du
The equation (36) is equivalent to'®

T
Tz
(38) Tr=| m | =
Ty
Ta

=)

Let IT : M — N be the canonical projection. Note that, in the coordinates (¢, z, v, w)
for M and (¢,z,v) for N, U(t,z,v,u) = (t,z,v). Let 7: M — TN be the parame-
terized field defined by:

(39) F=1.71

Equation (39) means that the parameterized field 7 in cordinates (¢, z, v) is obtained
from the field 7 written in coordinates by (¢, z, v, @) by eliminating its components in
the directions (%. Since 7 is parameterized by @, (), then 7 defines a (nonclassical)
control system with state (z,v) and input @.

The part (ii) of the next theorem means that every solution of (4) corresponds
to a solution of (40) with initial condition on an invariant manifold Y of (40).
Furthermore, the parts (iii) and (iv) shows that every solution of (40) converges to
T and every solution of (40) that is close T is also close to a solution of (4).

Theorem 2. Assume that the conditions (33)—(34)—(35) hold. Denote a point
(t,z,v,u) € M = N x U by (¢, u), where ¢ = (t,z,v). Let w, be the canonical
projection 7, : N — X defined by 7,(¢) = x and my, : M — IR™ defined by
7u(¢, 1) = ul®. Choose a smooth input i : [ty,t,] — IR™ “*+. Consider the control

18From a numerical point of view, it is better to solve the linear equation 7'7 = 7 rather than
compute 7 = T~ 17, In the same vein, when integrating numerically the explicit equation there is
no need to include the equation ¢t = 1.
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system defined on N with input 4(t) € U given by:

(40a) (1) = 7@, a),a @)
(40b) (o) = ¢Co
Where 7 is defined by (38)-(39). Consider y*) = &4 ( ),k=0,...,k* as a func-

tion defined on M and let § = (y©,...,y* )) Deﬁne the set T = {(¢,u) €
M |y(¢,u) = 0}. Then the following pmperties hold:

(i)

If (¢,u) = (t,z,v,u) € X, then &; = (d;,7)|ca) = % (@)l = filz,
U(O))|(<’g), 1= 1, ey N

Choose an input u(-) and let ((t) be a solution of (40) with (((to), (to))
Y. Then x(t) = 7:(C(t)) is a solution of (4) with input u(t) = 7, (C(¢ ),( ).
Conversely, if x(t) is a smooth solution of (4), then x(t) = m,({(t)) for
some solution of (40) with ({(to),u(to)) € Y and v(¢(t),u(t)) = 0.

Let ((t) be a solution of (40) with initial condition (o and input u(t).
Assume that ((t) is well defined for t € ([to,t1], then |[g(t)|| < e |y(to)]|
for all t € [to,t1].

Let L C M be a compact set. Let e, > 0 and Ly = {u € M|dist(u, L) <
61}.

Assume that there exists a > 0 such that, if ||[u(t)]] < a for t € [to, t1],
then every solution ((t) of (40) with initial condition ({(to),u(to) € Ly is
such that (¢(t),u(t)) is well defined and is inside a compact set R C M
for every t € [to, t1].

Then there exists € > 0 such that, if ((t),t € I = [to,ty] is a solution of
(40) with initial condition inside L, and ||g({(to),u(to))|| < €, then there
exist k1,k2 > 0 and a solution x(t) of (4) such that |7, (C(t)) — z(t)|| <
k1|7 (to)||e®2E=10) for all t € [to,ty].

Proof. (i). Let mp : S — M be the canonical projection. Let £ € S and ¢ be a
function in the set ¥ = {¥y,..., .} = {t,7,4@, ... ,y*" =D} In this part of the
proof we will distinguish the functlon x; defined on S from the function z; defined
on M such that x; = Z; o mpr. So we may write ¢ = ¢ o s, etc. The notation 7
is then clear from the context.
Note that, by (36) we have do(7)|x,, ) = dd(%)|¢ for any ¢ € S such that
m(§) € Y. Since {d¥} is a basis of Yi+_1, by part 7 of lemma 3 it follows that
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dz € span {d\fl} In particular we must have dz; = Z;'Y:1 aijd\f!j. Note now that

(41a) filt,zu) = (dmi,%)

(41b) = (d(fiowM),%)
(41c) = (W;V[dfi,%)

(41d) = (d%i,(wM)*%)

(41e) = (iaijd\ij,(m)*%)
(41f) = iamd\ii,(m)*%)

It is easy to show that, for every (C, u) € T, every & such that (¢,u) = mar(€) and
every function \I’ € ¥ for j=1,...v7 we have

d

(42) (8,7l .2y = (8, (). ) = (¥, D)l

(this is an easy consequence of (36) and the fact that 0 = (dy"), 1 T)(¢,a) for every
(¢,u) € T). From (41a), (41f) and (42) it follows that:

filtma(QmC ) = 3 asd®, (man)e () e

.
- Za” d%;,7)(c.0)

y
= Z(am d\I’ T>|(C7E)
i—1

J
= <dwla > (¢ @)

for every ((,u) € T, showing (i).
(ii). Construct the system evolving on M with input a(!) and state u = (¢, @)
given by

(43) po= r(p,a")

It is clear that (43) is the prolongation by integrators of (40). Hence the smooth
solutions of (40) corresponds to the solutions of (43) for convenient initial condi-

tions. Furthermore,
— ~ /\(1)
T((,u,u ~
( (Ca(l) ) > :T(Cauau(l))

From (36¢) it is clear that Y is an invariant set for system (43). In particular,
by (i) we have dx(7) =& = f(z,u) along u € YT, and so the first part of (ii) holds.
Now let z(t) be a solution of (4). By Proposition 1, there exists a corresponding
solution & (t) of S with y(t) = 0 and & ,(t) = z(t), &,(t) = wu(t) obeys the
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differential equation (4a). It follows that 7 = 75 = f + gu and so Z(t) obeys
(36b).

Note also that proposition 6 assure that the local chart {t,z,7,d,, (u* T++1) .
k€ IN)}, where o = (@* ... 4l?), is unbounded in Z = {©, (u® +k+1) : k ¢
IN)}. Since y(& (t)) =0, in these coordlnates we have & (t) = (¢,2(¢),0,u(t), Z(t)).
As this local chart is unbounded in Z(t), we may define &> (¢) = (¢, Z(t), 0 u(t),0) by
taking Z(t) = 0. By construction, span {dz,du} C span {dZ,dy,du}. Hence, its is
clear that 1, (£) = &, (1) and é1,,(+)) = €a,,(t). Now take us(t) = (¢, 2(t), v(t), a(t)) =
(&), u(t)) = 7 (&(t)). So, ua(t) obeys (43) and hence (»(t) is a solution of
(40) with initial condition (o = (2(to) and input u(t). As Z(&2(t)) = 0, we have
B(uz(t) = 0.

(iii). Straightforward from (36c¢).

(iv). We know that every smooth function is globally Lipchitz inside a compact
R. Hence,there exist some k; > 0 such that ||7((1,01) — 7(C,02)|| < k1 l|(Gr,ur) —
((:2,’172)”. Taking ﬂ = ’171 = @\2 it follows that ||T((:1,a) — T(CQ,@)H S k1||<1 — (:2“ for
every (Claa)a (Claa) €R

Since two solutions (;(t) and (2(t) of (40) with bounded input u%(-) and with ini-
tial conditions respectively ((1(to),@(to)), ((2(to),u(to)), both in L; are well defined
in [to, 1] and are such that (¢1(¢),u(t)) € R and ((2(t),u(t)) € R for t € [to, t1],
from the same idea of the proof of the classical result of continuous dependence of
the solutions of Lipchitz continuous differential equations'®, we have

(44) 1G(#) = @) < KieM="2) G (fo) = Galto)ll, ¢ € [to, ta].

for convenient positive real numbers K, K.

Now around every point ¢ € L we may construct open sets V),, U, and a local
chart ¢, : U, — V,, of M, such that (¢,z,v,u) — (¢,7,y,0,u). This construction
may be done in a way that V, is a rectangular open set containing ¢, (x) and the
closure of U, is compact. Since Y is closed, for every u ¢ T we may choose V,,U,
in a way. that U NY = (), where U denotes the closure of U,. In this case we,
denote Y,, = min,cg, [[y(a)||. Note that Y,, = 0, when g € Y, and Y > 0, when
ng Y

Furthermore, for every pair u; € Uy,i = 1,2, the mean-value inequality applied
to ¢, ! gives

as =l <Ky () — te)l] + 180n) ~F)ll+
151) = 72) |+ [9012) = 2] + [p12) = ) )

Note now that the family C = {U, : p € L} is an open covering of the compact
set L. So we may take a finite subcovering {U,, : i € A} and let K = max;ea K,
where K, is defined in (45). Note that this class is divided in two subclasses
Cl—{U cp € AU,NTY = 0} and C = {U, ,uEAUﬂT;é@} Let
Y = mm{Yu @€ L|U,€C}. By construction, if we take e, = Y, then

(46) a € L and ||y(a)|| < e implies that a is inside some U,, € Cs.

If U, € Cs, we may define 7, : U, — Y defined by 7, (¢, %Z,y,0,u) — (¢,7,0,0,u)
(defined in the local coordinates ¢,). By (45), it follows that

(47) lla —mu(a)|l < Klly(a)ll,a € Uy, Uy € Co

Which is a consequence of Bellman-Gronwall lemma.
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Now let € = min{es,e1/K}. Then, for every a € L, with ||y(a)|| < €, we may
take the solution with initial condition ug = ({(t0), u(to)) = mu(a) with input u(-).
From part (ii), as po € Y, it follows that 7, (¢(¢) is a solution of (4). From (47)
it is clear that m,(a) € L;.From (46), (47), and (44), the desired result follows
easily. a

7. EXAMPLE

We shall illustrate the main results of this paper with an academic example.
Consider the system

i =1
1 = 10xz3 + x3ul
To = ul
T3 = u2
yl = 2l+ae™ —2—2a+ 2y —bcos(t) =0
y2 = x2+bcos(t) =0

The symbolic derivatives of the output were computed using Matlab® symbolic
package (Mapple®). The numerical dimension of ), is the numerical rank of the

by . .
%. In order to determine the generical rank of J,

their ranks have been computed for random values of ¢, z, u, . . ., u(F), giving o9 = 0,
o1 = 1, 02 = 2, indicating that, if the system is regular, the index is given k£* = 2
(during the numerical integration of (40), one may test pointwise the condition num-
ber of the matrix 7' and compute numerically the rank of Ji in order to test if our
assumptions of regularity do not hold). By the same method, one may verify that

Jacobian matrix .Jj, =

the rank of Dy« = % for random values of (t,z,u,...,u*")) is equal to
142 x (k* 4+ 1) = 7, showing that the outputs are generically differentially inde-
pendent. In this case the implicit system is completely determined. One may show
that y is generically a flat output for S, which is verified by showing that the rank
of Dy is the same of Ji, or equivalently, span {dz} C span {dt,dy,...,dy")}
[31, 37, 34]. Then, it is clear that Z = (). Testing numerically other random points
and combinations, we have chosen 7 = ugl). In this way the coordinate system (32)
for this system is {¢,7,7,0,u} withZ =u =0,y = (y,9,9), U = Gs. It is important
to mention that, in this example, y*") does not depend on w(*"). Hence it is easy
to see that one may eliminate (as done in the example) the set u(¥") of coordinates
from M, reducing the dimension of the state space of system (40). The symbolical
computations in Matlab/Mapple give

T=1[1, 0, 0, 0, 0, 0, 0, 0;
bxsin(t), 1l+akxexp(xl), 1, 0, 0, 0, 0, 0;
-b*sin(t), 0, 1, 0, 0, 0, 0, 0;
bxcos(t), axexp(x1)*(10*x3+x3*ul), 0,
(1+axexp(x1))*(10+ul), (l+axexp(xl))*x3+1, 0, 0, 0;
-b*cos(t), 0, 0, 0, 1, 0, 0, 0;

-b*sin(t), a*exp(x1)*(10*x3+x3*ul) "2+a*exp(x1)*(10+ul)*u2+
axexp (x1)*x3*ulp,0,2%a*xexp(x1)* (10*xx3+x3*ul) * (10+ul)+
(1+a*xexp(x1))*ulp,2*arexp (x1)* (10*x3+x3*ul) *x3+ (1+a*exp (x1)) *u2,
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(1+axexp(x1))*(10+ul), (1+axexp(xl))*x3+1, 0;
bxsin(t), 0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 11;

where [t, x1, x2, x3, ul, u2, ulp, u2pl = [t,z1, 22, T3u1, us, U, ts]. The so-
lution of system (40) with initial conditions in Y gives the results® of figures 2 and
3. The figure 4 shows that the distance between the point ((t) = (¢(t),%(t)) and
T does not grow in time. In order to verify the numerical errors in the deriv-

FIGURE 2. Curves of m,({(t)) versus time. The curve x(t) is
continuous, s (t) is dashed and z3(t) dashed-dotted

14

FIGURE 3. Curves of m,({(t)) versus time. The curve wuq(t) is
continuous, us(t) is dashed.

ative of z(t) of our method, we have computed the error e(t) = ({(dx,7({(t))) —
Ft, (), mu (C(1))) — g(m2(C(t))mu (C(t)). The ideal result would be zero, but
small numerical errors are shown in figure (5).

Another test was performed by applying the input m,(((t)) of figure 3 to the
system (5) with the same compatible initial conditions 7, ({(tp)). The ideal result

of y(t) obtained in this way would be zero, but small deviations have been detected

20gimulations have been made in Matlab/Simulink@®.
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. L L L L L L
o 2 4 6 8 10 12 14

FIGURE 4. Curves of y(m,({(t)) versus time. The curve y; (t) is
continuous, y»(t) is dashed.

in figure 6, due to numerical errors of our method and the errors in the numerical
integration of the test itself.

x10°°

FIGURE 5. Error e(t) in the derivative of 7, ({(t)). The curve e (t)
is continuous, es(t) is dashed and e3(t) is dashed-dotted.

Note that all the solutions of (40) will converge to Y and hence a set of compatible
initial conditions can be found simply by integrating the explicit system (40). We
have chosen a = 6,b = 0.2,y = 8 = 70 and initial conditions (Matlab long e
format)?%:

C(O) = [t,2171,2172,563,11,1,11,2,1),1,1.12](0)
= [0 2.595584190645906e+000 -5.999999999754128e+000
4.546949839215331e-012 4.207790366139719e-012
-8.330778672817486e-002 5.999999999754128e+000 0]

Remark 4. The “standard” differential index of this system is vq = 3 (k* = 1).
Including the first order derivatives of the constraints into the set of constraints,

21The files for Matlab 6 used in this test may be retrieved in
http://www.lac.usp.br/~paulo/implicit.



SOME GEOMETRIC PROPERTIES OF DIFFERENTIAL-ALGEBRAIC EQUATIONS 27

L L L L L L
o 2 4 6 8 10 12 14

FIGURE 6. Curves y1(t) and y2(¢) with 7,({(#)) as the input of
system (5). The curve y; is continuous, y» is dashed.

one may reduce the index of this system to vq = 2 (k* = 1) using the techniques of
[6, 4]. However, the second derivatives of the constraints depend on the derivatives
of the algebraic variables uy and us. Hence in order to reduce the index further
one must use symbolic transformations, for instance the techniques of theorem 1.
This simple example has the property that the explicit system obtained by adding an
integrator in the first input is decoupable by static-state feedback, and so one could
use the ideas of the beginning of section 5 in order to obtain another index-zero
equivalent system. However, for more complex examples the symbolic reduction of
the index by any means may be a hard task, whereas the techniques of theorem 2
could be applied.

8. CONCLUSIONS AND FURTHER RESEARCH

Further research combining symbolic and numerical algorithms can be useful
for improving numerical integration schemes for higher-index DAEs (see [11, 44]).
In this paper we have established two potential methods of integration of DAEs.
The first one, based in the dynamical extension algorithm (DEA), can be applied in
particular cases, but it can produce very complex symbolic manipulations associated
to the DEA. The second method is based on the geometric properties of DAEs and
seems to be promising for the numerical integration of higher-index DAEs. This
second method is based on the computation of the symbolic derivatives of the
constraints and on the numeric solution of the (pointwise) linear equation M7 =
7 (see equation (38)). If the system is sparse, this property will reflect on the
derivatives of the constraints, and then it will assure that the matrix T is also
sparse. Hence, our second method is compatible with the application of linear-
algebra packages for sparse matrices. The assumptions (34)—(35) of theorem 2
may be weakened, and the corresponding functions may be chosen pointwise using
numerical methods, but this is the subject of future research.
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APPENDIX A. PrROOF OF LEMMA 3

Proof. Let (x_1,u_1) = (z,u) be the original state representation of system S with
output 3 defined by (5). In step k — 1 of this algorithm (k = 0,1,2,...) one has
constructed a classical (local) state representation (z_1, us_1) with output y*) de-
fined on an open neighborhood Uj,_1 of € € S. Assume that span {dt, dxy_1, dy(k)}
is nonsingular around £22. Note that we can give the following geometric description
of DEA
e (S1) Choose jj (possibly among the components of y) by completing
{dxr_1} into a basis {dt,dmk,l,dgj,gk)} for span {dt,dmk,l,dy(k)}. Now
choose uy, (possibly among the components of uy,_;) by completing {dt, dzs_1, d]j,(ck)}
into a basis {dt,dmk,l,dgj,(ck),dﬂk} of span {dt,dzy_1,dur_1}. According
to the last paragraph of section 2.1, this defines a local state feedback. By
construction, this state feedback have the properties (13).

221t is easy to show that this is equivalent to the fact that the matrix by (zj_1) of (11) has
constant rank around &.
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e (S2) Define z, = (a:k_l,gj,(ck)), and uyp = (ji’“),ak). This is an extension of
the state of the form (14).

Note that, (see the end of section 2.1), we have that (S1) and (S2) produces a
new local state representation (xy,uy) of system S defined in an open neighborhood
U C Ug—1 of €. Note that the steps (S1) and (S2) describes the procedure of the
Dynamic Extension Algorithm that could be performed, at least theoretically, for
nonaffine systems??. In particular our geometric interpretation of Lemma 3 holds
for nonaffine systems.

(i and ii). We show first that the state representation (zy,uy) is classical, i. e.,
span {dzr} C span {dt,dxy,du}. This property holds for (z,u). By induction,
assume that it holds for (zg, u). Then from (S1) and (S2) we have span {dir+1} C
span {dt, day, diy, dgj,(ck),dgj,(ck)} C span {dt, daysr, dups: ).

In step k = 0, we choose a partition y(©) = (]j(()o) , 37(()0)) and construct g satisfying

(S1) for k = 0. Then dg” € span{dt, dz, dg\"}. Thus, di € span{dt,dz, di, dy”),
dgj(()o)} C span{dt,dz, du, dgj(()o),dgj(()o)}. So, dy € span{dt,dzg,dug}. Then it is easy

to see that 1 and 2 are satisfied for £ = 0. Now assume that, in the step &k — 1 we
have a local state representation (zx—1,ur—1) satisfying i and ii. Choose a partition

yk) = (gj,(ck), g?fck)) in a way that (S1) is satisfied and construct uy, satisfying (S2). By

i for k — 1 and (S1) it follows that, span{dt, dz} = span{dt,dz,dy, ... ,dy"*}. By
construction, notice that dﬂ,gkﬂ) € span{dt,dzry_1,diy_1, d]j,gk) , dgj,(gk)} C span{dt,dz;_1
duk,l,dgj,(ﬂk),dgj,(fk)}. By (S1) it follows that dy**Y) € span{dt,dzy, dup}. We
show now that if ii holds for k£ — 1, then span{dt, dxy, du} = span{dt, dz, dy, ...,
dy* V), du}, completing the induction. In fact, note that span{dt,dzy, duy} =

span{dt, dx_1, dgj,(ck), duy }+ span {dgj,(ck)} By (S1) and the induction hypothesis
it follows that span{dt, dxy, duy} = span{dt,dz, du,dy, ..., dy®™ }+ span {dgj,(ck)}.
Since dy*+1) ¢ span{dt, dxy, duy}, then ii holds for k. This shows i and ii.

(iii, v, vi, vii). We show first that
(48) dim Yy (v) — dim Yy (v) > dim Vi1 (v) — dim Yy (v) for every v € S,

For this note that, if the 1-forms {n1,...,ns} C Y} are linearly dependent mod
Vi1, i e, if apdt + >0 asmi+ D0, Zf;é ﬂijdyl(]) = 0 then, differentiation in
time gives dodt + Y i_, (Gimi + aimi)+ Dby Ef;& (ﬂijdy?)-l- 5ijdy§”1)) =0. In
other words, 7,...,7ns are linearly dependent mod Yj4;. Let & € Si. From the
nonsingularity of Y;,Y;,7 =0,...,kin S, if dimY; —dim Y, _; =1 in £ € S, then
we may choose a partition y = (§7,77) such that § has [ components and we locally
have Y}, = span {dgj(k)} +Y;_1. Let §; be any component of y for j € |[p—1]. By
construction we have that {dﬂj(.k),dgj(k)} is linearly dependent mod Yj ; for every
j € |p—1]. From the remark above it follows that the set {dﬂj(.kﬂ),d]j(k“)} is

231 this case the computations are much more difficult since one may apply the inverse function
theorem to compute the feedback ug_1 = y(x_1,v) in each step of the algorithm. A description
of a version of the DEA for nonaffine systems can be found in [29].
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(locally) dependent mod Y} for every j € |p — r], showing (48). In particular the
sequence py is nonincreasing.
We show now that

(49) dim Vi (v) — dim Vi1 (v) < dim Yg41(v) — dim Yy (v) for every v € S,

Assume that (zy,ug) is a state representation constructed around a neighborhood
Ui of a point ¢ € S) and satisfying (S1), (S2), i and ii. Since dgj,(ck) C uyg, it
follows that the components of dgj,(ck) are independent mod ), since they are also
components of the input w; and furthermore, span {dt,dz)} = V. Hence gj,(clfll)
may be chosen satisfying iii, showing (49). In particular, og4+1 > 0.

To show the convergence of sequences pg and oy for some k* < n, assume that
v € Si. Denote span{dz} by X. Then Y, = X + Y}, and thus

dim Y (v) = dim X (v) + dim Y, (v) — dim(Yx(v) N X (v)).

Denote for k € IN :

sp(v) = dim Y (v) — dim Vi1 (v)

pe(v) = dimYi(v) —dimYj_1(v)
Note that pr = pr(v) and o} = sy (v) are constant for every v € Si. We also have
(50) sp(v) = pr(v) — dim(Ye (v) N X (v)) + dim(Yi—1 (v) N X (v)).
We show now that
if there exists k* and some v € S« such that sg«(v) = pg-(v) = p,

then sg+11(€) = pr=41(€) = p for every € € S

Note that, from (51), a simple induction shows that s (&) = pr(§) = p for every
k > k* and & € Sg«. Furthermore, this last affirmation implies that S = Sg~ for
k> k*.

To show (51), assume that pgs (v) = s« (v) = p for some v € Si+. From (50), it
follows that

(51)

—dim (Y- (v) N X (v)) + dim(Yy-—1 (v) N X (v)) = 0.

Since the dimensions of Y3+ N X and of Y+ 1 N X are constant in Sk, it follows
that, for every £ € Si+, we have

(52) pr=(§) = si=(§) = p
and
— dim(¥i- (€) N X(€)) + dim(Yie _; (€) N X (€)) = 0.
Note from (50) that
(53) sk (§) = pre41(§) = — dim(Vy- 11(§) N X (E)) + dim (V- (§) N X ()
for every £ € Si+. By (48), (49) and (52), it follows that

Ske41(&) — Preg1(§) > 0.
Since
— dim(Yj 41 (§) N X (€)) + dim (Y« () N X(€)) <0,

the only possibility is to have both sides of (53) equal to zero for every £ € Sp-x.
Using (48) and (49) again, then (51) follows. Note that a simple induction shows
that (51) implies vii.
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To complete the proof of v, vi and vii it suffices to show the existence of k*
such that (51) holds. For this note that dim(Y%(v) N X (v)) is nondecreasing for
k=0,...,n and it is least than or equal to n = dim X. In particular, there exists
some k* < n such that dim(Yj«(v) N X (v)) = dim(Yi«_1 (v) N X (v)).

(iv). Easy consequence of i, ii and the way that uy, is chosen in (S1).

(viii). The first part of viii follows easily from iii, from the fact that card g = oy,
and from v. The second part of viii follows easily from the equality card g = oy,

from the fact that the components of dgj,(gk"_l) are independent mod Y, and from
the fact that oy, = p, = p for k > k*.
(9). Easy consequence of lemma 2. O

APPENDIX B. COMPUTATION OF (ay, 1) IN STEP k OF THE DEA

Let
_(k)

Uy = alt,zr—1) + b(t, Tp—1)up—1
~(k ~ >
?Jl(g ) = a(t,xr—1) + b(t, Th—1)Ur—1
where rank b = o} around Zj_;. Up to some reordering of inputs, let b =

( b1 bia ) where by is locally nonsingular. Then define locally around (¢, Zx_1):

= (%) = ()
ax(o) =l ()

It is easy to verify that such (ag,8k) is a possible choice that has the convenient
properties.

APPENDIX C. PROOF OF PROPOSITION 4

Proof. By the nonsingularity of the codistributions Y}, k € IN, and using the same
idea of the proof of part 5 of lemma 3 (in particular the proof that the sequence
pi is nonincreasing), it is not difficult to show that there exist a local basis of
Yi of the form {dt,dyi,...,dy\"", ... dy,,...,dy""”}. Around any & € T, the
part (i) of Lemma 5 (see the proof of part (ii) of this lemma) implies that B =
{dygo), ey dygpl), ey dy,(,o), ... ,dyfqp”)} is a basis of Yp,.

Let A C IR x X be the subset such that y*) (¢,2) = 0,k € IN. Let

A= {me Xy (t,2) = 0,5 € |r],i; € {0,1,...,pj+1}}.

We show now that, around any (¢,z) = 7, (§) with £ € T', we have A = A’. In fact,
let (t,z) € A’. Tt is clear that A C A’. By part (ii) of Definition 5, we must have
dy(?itk) ¢ Y;. for k € IN. By part (i) of lemma 5 it follows that dy(?it%) € Y.
(otherwise one can construct a 1-form n # 0 such that n € Y- N span {dt}).
In particular, Y-, = Yy for k € IN. Hence, dy#itk) = 2221 S aijdyj(-’) for

convenient functions «;; (¢, z) and for all k € IN. Then y](-pj+k+1)(a:) = (dy](-pj+k);f+
gu) = 2221 iy aijy](.lﬂ) = 0 showing for every x € A’ showing that A’ C A.
By the nonsingularity of the codistribution Yg+ = Yg«1q, it follows that A is
an immersed submanifold of IR x X'. Then it is clear that (i) is true. To show
that (ii) is true, it suffices to show that A is an invariant manifold. But this

is a straitghforward consequence of the fact that one may complete the set § =
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{y1, - - ,y§p1),...,yr,...,y,€p”)} into a local coordinate system (¢,7, ) of IR x X.
Since dij") € Yi-, we locally have §(V) = ¥(g) = 0. If (o, o) € A then gV |t0 = 0.

It follows that § = 0 is an equilibrium point differential equation

g =9y
and so, it follows that (¢, z(t)) = 0. Since dy*) € span {B}, one has y*) = y*) ()
Hence, y® (5(t)) = y* (§(to)) = 0 and so (t,z(t)) € A. O

APPENDIX D. PROOF OF THEOREM 1

Proof. Using the same arguments of the proof of lemma 4, one may construct an
affine state representation of the same form of (18) after the step k* of the dynamic
extension algorithm (instead of step k* — 1 in the proof of that lemma). In this case
T= (:U,gj(()o), o ,gj,(clf*)) and & = (w, u), where w = gj,(clf*ﬂ) and p = Uy-. By parts 1
and 8 of lemma 3 we see that dy*) € span {df, (dwD) :§=0,... k—Fk* — 1)} for
all k € IN.

Making w = 0 (a nonregular feedback) and adding the constraint y = h(z) =0
we will show that we obtain a pseudo-explicit system. In fact, making w = 0 defines
a Lie-Bécklund imersion ¢ : T — S, where the system T is defined by:

(54) T = f(t,2)+9t,Dn

Note that the local coordinates of S induced by the state representation (I, )
are {t,Z, (u*) : k € IN)} and the local coordinates of S are {t,, 2, M} where
Q= (w® :kecN),and M = (u® : k € IN)}. In these coordinates we have
ut,z, M) = (t,7,0, M). Let ¢ be a function defined on S. We abuse notation,
denoting ¢ o ¢ simply by ¢. As ¢ is a Lie-Bécklund immersion, it follows that
#*) o1 = (¢ 01)¥). By construction it is clear that

Sdt = dt

dr = dx
cdp® = du®, for allk € I
Fdw® = 0, for all k € IN.

To show that T has the properties of definition 2, it suffices to consider the same
properties of system S and observe that the pull-back +* will preserve these prop-
erties. In fact, as w = gj,(f]i*ﬂ), noting that y* = 4*)(F) for k¥ < k* and y® =
y B (Z,w, ..., wk=*F =) it is easy to show that the sets I's = {¢ € S : y¥) (&) = 0}
and 7 = {v € T : g™ (v) = 0} are such that I's = «(I'7). Using part 1 of
Lemma 3, and (55) it is easy to show that the dimensions of +*Y}, are preserved for
k =0,...,k" and property 8 of Lemma 3 implies that t*Y; = 1*Yy« for & > k*.
By similar arguments, it follows that the dimensions of ¢*})}, are preserved for
k=0,....,k" and t*Yy = 1"V~ for k > k*. The regularity of +*Y} around the
points I'y can be easily deduced from the part (iii) of lemma 5 and the regularity of
the other codistributions. The properties (i) and (ii) of definition 5 are consequence
of the fact that®® (*)y- = t*span {dt,dZ} = span {dt,dZ} and that 1*)}, = 1* V-
for k > k*.

The result follows from the application of Prop. 5 to system T defined by (54). O

24 Abusing notation, we denote to. =t and Fo 1 = .
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